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The Florida Keys reef tract (FKRT) has a unique geological history wherein Holocene
sea-level rise and bathymetry interacted, resulting in a reef-building system with notable
spatial differences in reef development. Overprinted on this geologic history, recent
global and local stressors have led to degraded reefs dominated by fleshy algae, soft
corals, and sponges. Here, we assessed how coral physiology (calcification rate, tissue
thickness, reproduction, symbiosis, and bleaching) varies seasonally (winter vs. summer)
and geographically using 40 colonies of the mustard hill coral Porites astreoides from
four sites across 350 km along the FKRT from 2015 to 2017. The study coincided
with a high-temperature event in late summer 2015 that caused heterogeneous levels
of coral bleaching across sites. Bleaching severity differed by site, with bleaching
response more aligned with heat stress retroactively calculated from local degree
heating weeks than those predicted by satellites. Despite differences in temperature
profiles and bleaching severity, all colonies hosted Symbiodiniaceae of the same genus
(formerly Clade A and subtypes). Overall, P. astreoides at Dry Tortugas National Park,
the consistently coolest site, had the highest calcification rates, symbiont cell densities,
and reproductive potential (all colonies were reproductive, with most planula larvae per
polyp). Corals at Dry Tortugas and Fowey Rocks Light demonstrated strong seasonality
in net calcification (higher in summer) and did not express visual or partial-mortality
responses from the bleaching event; in contrast, colonies in the middle and southern
part of the upper keys, Sombrero Key and Crocker Reef, demonstrated similar reduced
fitness from bleaching, but differential recovery trajectories following the heat stress.
Identifying reefs, such as Dry Tortugas and possibly Fowey Rocks Light that may
serve as heat-stress refugia, is important in selecting candidate sites for adaptive reef-
management strategies, such as selective propagation and assisted gene flow, to
increase coral-species adaptation to ocean warming.

Keywords: scleractinia, in situ calcification rates, reproduction, coral-algal symbiosis, coral reef degradation,
buoyant weight
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INTRODUCTION

Coral reefs have declined in live-coral cover by 50–80% over
the last four decades from the culminating impacts of local
and global stressors (Gardner et al., 2005; De’ath et al., 2012;
Hughes et al., 2018), putting at risk the vast ecological goods
and services that coral reefs provide such as coastal protection,
fisheries, and tourism (Moberg and Folke, 1999; Pratchett et al.,
2014; Storlazzi et al., 2019). Ocean warming is identified as
the greatest threat to coral reefs (Intergovernmental Panel on
Climate Change (IPCC), 2018), particularly because of recent
severe and repeated marine heatwaves resulting in widespread
coral bleaching (Eakin et al., 2019), exacerbated disease outbreaks
(Randall and van Woesik, 2015; Precht et al., 2016), and
increasingly severe storm events (Gardner et al., 2005; Webster
et al., 2005), with little reprieve between disturbances (Hughes
et al., 2003, 2018). Coral reef communities in the Caribbean and
Florida Keys have already shifted from three-dimensional, reef-
building structures to flattened reefs dominated by soft-bodied
benthic dwellers (Alvarez-Filip et al., 2009; Norström et al., 2009;
Ruzicka et al., 2013; Lenz et al., 2015). These structurally degraded
ecosystems leave coastlines, islands, and their communities
vulnerable to erosion and inundation, especially as hurricanes
(Webster et al., 2005), sea-level rise, and wave stress intensify
(Storlazzi et al., 2019). Identifying sites where corals maintain
biological performance that supports reef building, coral-
population recovery, and ecological resilience is critical as local
and global stressors continue to impact coral reef ecosystems
(Beyer et al., 2018; Guest et al., 2018; Darling et al., 2019).

Exceptional reefs that stand out against the current backdrop
of degradation can greatly influence how sites are prioritized
in conservation and management strategies (Beyer et al., 2018;
Guest et al., 2018; Hoegh-Guldberg et al., 2018). Some sites and
regions have been described as “reefs of hope” (McClanahan
et al., 2009), “bright spots” (Cinner et al., 2016), and “reef
oases” (Guest et al., 2018). These reefs were identified based
on percent coral cover, reef biodiversity, or fish assemblages as
being influenced by factors including location, socioeconomic
status, and environmental and biological traits (Cinner et al.,
2016; Beyer et al., 2018; Guest et al., 2018; Darling et al., 2019).
Although metrics on percent coral cover and reef assemblages
are readily available to compare sites, there is a general lack
of information on the critical biological processes that promote
coral recovery and resilience. Identifying locations where in situ
coral physiology outperforms that at other sites could further help
prioritize reef management, protection, and restoration strategies
(Beyer et al., 2018; Guest et al., 2018; Darling et al., 2019).

The Florida Keys reef tract (FKRT) consists of a unique,
subtropical and largely submerged spur-and-groove and patch-
reef system that stretches 350 km approximately 6–10 km from
shores of the Florida Keys islands (Stephenson and Stephenson,
1950). Based on geological characteristics, the reef system is
traditionally divided into subregions including the upper, middle,
and lower Keys, and the Marquesas/Dry Tortugas (Murdoch and
Aronson, 1999; Lidz et al., 2006; Toth et al., 2017, 2018) featuring
strong spatial and temporal variability in reef development (Lidz
and Shinn, 1991; Precht and Aronson, 2004; Lidz et al., 2006;

Toth et al., 2018). Mean percent coral cover throughout the
FKRT is now less than 5% (Ruzicka et al., 2013) and current
spatial patterns in coral net calcification rates along the FKRT
correlate with average Holocene reef thickness with the greatest
suppression in reef development between the middle and lower
Keys (Kuffner et al., 2013; Manzello et al., 2015; Toth et al.,
2018). The suppression of reef development in the middle Keys
may be driven by unfavorable environmental conditions of water
traveling out of tidal passes, connecting the offshore reefs to
Florida Bay and bringing large fluctuations in temperature,
salinity, turbidity, and nutrients; this theory is known as the
“inimical waters hypothesis” (Schlager, 1981; Neumann and
Macintyre, 1985; Hallock and Schlager, 1986; Ginsburg and
Shinn, 1994; Smith, 2002; Precht and Miller, 2007).

In recent decades, in situ sea temperatures throughout the
FKRT have increased, with mean maximum daily temperatures
exceeding 30.5◦C at least once every year since 1994 (Kuffner
et al., 2015; Manzello, 2015). As thermal stress along the FKRT
persists on a near-annual basis, it is important to understand
the in situ response of coral physiology (i.e., calcification, coral-
algal symbiosis, reproduction, and survivorship); in particular,
how traits vary in response to differences in water-residence
time, bathymetry, proximity to tidal passes, and other physical
or environmental gradients along the FKRT. Given the
environmental history of the FKRT and recent thermal-stress
events, the goal of our 2-year study was to quantify differences
in coral response to temperature stress that may be driven by
reef location. Using four, previously established sites where coral-
calcification assessment has occurred since 2009 (Kuffner et al.,
2013, 2019), we assessed coral colony-level traits of 40 Porites
astreoides colonies followed from May 2015 to May 2017 across
the length of the FKRT from Miami to the Dry Tortugas. We
compared calcification rates (e.g., Kuffner et al., 2013; Manzello
et al., 2015), tissue thickness, reproductive potential (Chornesky
and Peters, 1987; Serrano et al., 2016), and Symbiodiniaceae
concentration, identity, and diversity (Kenkel et al., 2013; Hauff
et al., 2016; Cunning et al., 2017) as proxies for coral fitness that
reveal information about resistance and resilience against heat
stress. Few studies have simultaneously measured these essential
physiological traits in the field to determine possible trade-offs
as corals experience the natural spatial and temporal variability
of environmental conditions along the FKRT (Manzello et al.,
2018). We provide evidence based on our colony-level traits that
corals at specific sites (Biscayne and Dry Tortugas National Parks)
maintained physiological function despite the severe thermal
anomaly while corals in the middle Keys and southern part of the
upper Keys were more vulnerable, further supporting the inimical
waters hypothesis.

MATERIALS AND METHODS

Study Sites and Coral Collection
Four sites spanning the ∼350-km Florida Keys reef tract
(FKRT) (Figure 1A) were established for the calcification-
assessment network by the United States Geological Survey
(USGS) Coral Reef Ecosystems Studies (CREST) project in 2009
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FIGURE 1 | (A) Map of sites established by the U.S. Geological Survey for the calcification assessment network along the Florida Key Reef Tract, with Pulaski Shoal
Light (green) in Dry Tortugas National Park, Sombrero Key Light (orange) in the middle Keys, Crocker Reef (yellow) in the southern upper Keys, and Fowey Rocks
Light (blue) in the northern upper Keys in Biscayne National Park. (B) Underwater photograph (image by I.B. Kuffner) of one of the 40 calcification stations with a
Porites astreoides colony fastened to the top. The cement block is 19 × 19 × 19 cm for scale. (C) Mean daily temperature (top, left axis) at each site with a red
dashed line indicating the 29.6_C maximum monthly mean in the Florida Keys (Manzello et al., 2015) and degree heating weeks calculated using climatology specific
to each respective site (bottom, right axis).

(Kuffner et al., 2013). Sites were chosen because of historical
oceanographic data collected by the Sustained Ecological
Research Related to Management of the Florida Keys Seascape
(SEAKEYS) program (Ogden et al., 1994), and meteorological
data from the National Data Buoy Center (NDBC) C-MAN
stations (Kuffner et al., 2013). The study sites are located
at Pulaski Shoal Light (Pulaski, 24.694◦N 82.773◦W) in Dry
Tortugas National Park, Sombrero Key Light (Sombrero,
24.627◦N 81.109◦W) and Crocker Reef (Crocker, 24.563◦N
80.527◦W) in the Florida Keys National Marine Sanctuary
(FKNMS), and Fowey Rocks Light (Fowey, 25.591◦N 80.096◦W)
in Biscayne National Park (Figure 1A and Supplementary
Table 1). All sites are in 3–5 m water depth on the outer reef
in low to moderate relief reef-crest habitat. Fowey, Crocker,
and Sombrero are 5–10 km off the coast of the Florida Keys
island chain, and Pulaski is about 100 km west of the city
of Key West, FL.

The mustard hill coral, Porites astreoides (de Lamarck, 1816),
was chosen for this study because of its abundance throughout
the FKRT, year-round reproductive strategy with peak larval
release in late April and May (Chornesky and Peters, 1987),
and its potential as a bioindicator of thermal stress (Kenkel

et al., 2013). P. astreoides is a fast-growing “weedy” species
common throughout the Caribbean in shallow and deep reefs
with higher relative abundance compared to other coral species
(Green et al., 2008; Darling et al., 2012). Colonies in shallow reefs
are commonly dominated by Symbiodinium spp. (formerly Clade
A; LaJeunesse et al., 2018), particularly “A4/A4a” (Thornhill et al.,
2006; Kenkel et al., 2013; Serrano et al., 2016; Cunning et al.,
2018).

At the previously established sites (Kuffner et al., 2019),
concrete cinder-block stations (19 × 19 × 19 cm, n = 10 per
site), placed 2–4 m apart from one another and fastened to the
benthos with two 15 cm stainless-steel threaded rods drilled and
epoxied into the substratum (Morrison et al., 2013), were used
to monitor coral survival and growth for 2 years. Each block
was designed to hold a single coral colony that was epoxied to
a polyvinyl chloride (PVC) disc that can be reversibly bolted
to the top of the cinder block using a wingnut (Figure 1B). In
April 2015, 10 P. astreoides colonies of the yellow/green color
morph measuring 4–6 cm in diameter were collected from each
site at 3 to 5 m water depth within ∼200 m using a hammer
and chisel to remove colonies from the substratum. A total of 40
colonies were used in the study. Care was taken to collect colonies
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no closer than 20 m apart to minimize the chance of collecting
genetic clones (Baums et al., 2019). Corals were epoxied onto the
PVC discs, weighed, measured, photographed and deployed to
the cinder-block stations.

Seawater temperature was recorded every 15 min (n = 96
per day) with HOBO Water Temp Prov2 temperature loggers
(Onset, Pocasset, MA, United States ± 0.2◦C) attached to two
of the cinder-block stations at each site. All temperature data
are publicly available (Kuffner, 2016). Mean daily temperature,
mean monthly maximum, and mean monthly minimum were
used to characterize sites. Degree heating weeks (DHW) for each
site during this study were calculated using in situ temperature
data and were also compared to the National Oceanic and
Atmospheric Administration (NOAA) Coral Reef Watch Satellite
Regional Stations in the Florida Keys based on local climatology
(Wyatt et al., 2020). To characterize the light environments
at each site, monthly mean (± SD) photosynthetically active
radiation (PAR) data were collected from satellite-derived water-
quality data products for the Florida Keys made publicly available
through the Optical Oceanography Laboratory1 using the virtual
buoys closest to the sites (Pulaski = FK01, 24.693N 82.773◦W;
Sombrero = FK07, 24.628◦N 81.112◦W; Crocker = FK08,
24.816◦N 80.676◦W; Fowey = FK11, 25.591◦N 80.096◦W).
Daily precipitation was used as a proxy for salinity and
was acquired from the NOAA Tropical Rainfall Measuring
Mission from the Environmental Research Division’s Data Access
Program (ERDDAP) that corresponded closest to the sites and
summarized by month2.

Seasonal Measurements:
Coral-Calcification Rates, Tissue Loss,
and Condition Scores
Every 6 months during the 2-year study (Supplementary
Table 1), the 40 colonies of P. astreoides were retrieved from
the field to measure seasonal changes in coral condition and
calcification rates. Colonies were brought to shore in coolers or
5-gallon buckets filled with ambient seawater, buoyant weighed
(Jokiel et al., 1978), measured with calipers, photographed, and
returned to the study site within 6 hrs. The difference in buoyant
weight for each colony at each time point was converted to dry
mass using 1.02 g cm−3 as seawater density and 2.93 g cm−3

as aragonite density of the coral skeleton (Jokiel et al., 1978).
The rate of coral calcification was calculated using the number
of days between each measured interval and normalized to the
initial planar-area footprint of the coral colony (using formula
for the area of an ellipse; Kuffner et al., 2013). Photographs
of each colony were captured on land and were white-balance
corrected with the same white, gridded-photography background
in each image to assess colony pigmentation over time based on
a condition score of (1): no bleaching, (2): paling to normal, (3):
1–50% bleached, (4): 51–99% bleached, (5): 100% bleached, and
(6): dead (Baird et al., 2018).

1https://optics.marine.usf.edu/
2https://oceanwatch.pifsc.noaa.gov/erddap/griddap/hawaii_soest_5687_3d16_
a6d4.html

Final Timepoint: Tissue Thickness,
Reproductive Potential, and
Symbiodiniaceae Communities
At the end of the study in April 2017, coral colonies were
sampled to compare coral-tissue thickness, reproduction (i.e.,
gametogenesis and planulation), symbiont cell densities, and
the composition of Symbiodiniaceae taxa across sites. Using a
masonry-tile saw, two 4-mm-wide sagittal sections were taken
from the center axis of the colony with the saw wetted with
ambient seawater. Slices from each colony were photographed
and archived. An additional 4 cm × 2 cm section was taken
from the center of the colony and processed as described in
Chornesky and Peters (1987) for histology to measure tissue
thickness (Loya et al., 2001) and reproductive potential. If the
center of the colony had died, a section was taken from the colony
side. The tissue sample was placed in buffered zinc formalin
fixative (Z-fix, Anatech Ltd.) diluted in filtered seawater (1:4)
(Padilla-Gamiño et al., 2014) for at least 48 h and then transferred
into 70% ethanol (diluted in distilled water) until processed by
Histotech Ltd. (Cleveland, OH, United States) where samples
were decalcified in diluted HCl and EDTA. The 4–6 µm thick
sagittal sections along the tissue and cross sections of the top,
middle, and bottom thirds were mounted on slides and stained
with hematoxylin and eosin (Chornesky and Peters, 1987).
One of the slices was used to examine tissue thickness using
microscopic images and the FIJI package of the opensource image
software ImageJ (Schneider et al., 2012). Each slice mounted on
a microscopic slide consisted of approximately 5–20 polyps. The
number of oocytes, spermatocytes, and planula larvae per polyp
were counted in ten haphazardly chosen polyps of each colony.

For Symbiodiniaceae, symbiont cell densities were first
measured by taking a 4 cm × 2 cm section from the third
sagittal slice and removing the tissue from the skeleton using
an airbrush filled with filtered seawater (0.1 µm). The tissue
slurry was homogenized, and 1 mL was aliquoted into a buffered
zinc formalin fixative to later count symbiont cell densities, with
n = 10 samples per colony, using a hemocytometer (n = 10
per site, n = 8 at Sombrero). Cell densities were normalized
to skeletal surface area (cm2) determined by the aluminum
foil wrapping technique (Marsh, 1970). Second, a sterilized
razor was used to remove approximately 5 mm2 of coral tissue
and placed in 1% sodium dodecyl sulfate DNA buffer and
shipped to the Hawai‘i Institute of Marine Biology (HIMB)
where genomic DNA was extracted and isolated using a cetyl
trimethylammonium bromide protocol3. The amplification of
the ribosomal Internal Transcribed Spacer 2 (ITS2) region, a
multicopy genetic marker, was used to identify Symbiodiniaceae
diversity with next-generation amplicon sequencing (NGS)
(LaJeunesse, 2001; Thornhill et al., 2007, 2014). DNA samples
were sent to the HIMB Genetics Core Facility for library
preparation using “itsD” and “its2rev2” primers (Stat et al., 2009)
and sequenced on an Illumina MiSeq platform with 2 × 300
paired-end read chemistry. The paired forward and reverse reads

3https://www.protocols.io/view/Bulk-gDNA-extraction-from-coral-samples-
dyq7vv
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from each sample (provided in fastq.gz files outputted from the
Illumina sequencing) were submitted directly to SymPortal4. The
SymPortal analytical framework is designed to resolve genetically
differentiated taxa of Symbiodiniaceae (formerly Symbiodinium
spp. LaJeunesse et al., 2018) using NGS data of the ITS2 amplicon
and its high intragenomic diversity by identifying defining
intragenomic ITS2 sequence variants (DIVs) as specific profile
types (Hume et al., 2019).

Statistical Analysis
Environmental parameters including temperature, light, and
precipitation were compared across the four FKRT calcification
network sites using a linear mixed-effects model with lmer in
package lme4 (Bates et al., 2015), site as a fixed effect, and date as
a random effect. For the biological response variables measured
over time (calcification rates, tissue loss and colony-condition
scores), univariate analyses were conducted to assess interactive
effects of time interval (Summer 2015, Winter 2016, Summer
2016, and Winter 2017) and site (Pulaski, Sombrero, Crocker,
and Fowey). Specifically, calcification rates and colony condition
scores were analyzed with linear mixed effect models in lme4 with
site and time interval as fixed effects and coral colony as a random
effect. ANOVA tables for all environmental and biological metrics
were generated using Type II sum of squares Satterthwaite
approximation of degrees of freedom using lmerTest (Kuznetsova
et al., 2017). Percent tissue loss was analyzed using glmmTMB for
a zero-inflated mixed model with the glmmTMB package (Brooks
et al., 2017) with the same fixed and random effects. Anova in the
package car (Fox et al., 2013) was used to generate a Type II Wald
Chi-square test of the zero-inflated mixed model. Post hoc Tukey
tests were conducted using the package emmeans (Lenth, 2018).
Assumptions of analysis of variance were confirmed of all models
using graphical inspection of the residuals with the DHARMa
package (Hartig, 2017) and the simulateResiduals command.

The coral-level biological responses (tissue loss, tissue
thickness, fecundity, spermatocytes, symbiont cell density,
calcification rate, and condition score) for P. astreoides were
analyzed using a permutational multivariate analysis of variance
(PERMANOVA) with 999 model permutations using adonis2
in the vegan package (Oksanen et al., 2007). First, the three
response variables were assessed by site and time interval as main
effects and second, all response variables measured in the final
time interval. Principal components analysis (PCA) was used to
visualize the multivariate relationship of the response variables by
sites for each time interval separately with the factoextra package
(Kassambara and Mundt, 2017).

RESULTS

Environmental Conditions
Of the environmental data available for each site, only in situ
temperature revealed site-level differences (Figure 1C). Mean
daily temperature measured throughout the study significantly
differed across sites (Figure 1C; P < 0.001) except for mean

4http://symportal.org, http://github.com/SymPortal

daily temperatures between the Crocker and Sombrero reef sites
in the middle and lower Keys, respectively (P = 0.247). There
were season-specific differences in mean temperature across site
(P < 0.001), except in Summer 2015 between Pulaski and Crocker
(Tukey Post hoc, P = 0.998) and between Sombrero and both
Crocker and Fowey (Tukey Post hoc, P ≥ 0.468). During the
height of the coral bleaching event in August 2015 (Manzello
et al., 2018), the maximum mean daily temperatures reached
32.3◦C at Fowey, 32.1◦C at Crocker and Sombrero, and 31.7◦C
at Pulaski (Figure 1C), exceeding the 30.5◦C bleaching threshold
in the Florida Keys (Manzello, 2015). These values are above
the maximum monthly mean from NOAA Coral Reef Watch
(2020) Version 3.0 Daily Global 5-km Satellite Virtual Station
for each site which is 29.53◦C at Fowey (2.7-km from site),
29.63◦C at Crocker (1.7-km from site), 29.71◦C at Sombrero
(1.7 km from site), and 29.59◦C at Pulaski (2-km from site).
In situ temperature measured at Pulaski in Dry Tortugas National
Park was generally cooler than the other sites, and DHW reached
2.6 in September 2015 and 0 in 2016 while Sombrero reached
3.6 and 0.9 DWH in 2015 and 2016, respectively (Figure 1C).
Precipitation (mm), as a proxy for salinity, was similar across
the four sites (P ≥ 0.099) with mean ± SE seasonal precipitation
for all sites ranging from 258.7 ± 30.9 mm at minimum in
Winter 2017 to 801.2 ± 103.8 mm at maximum in Summer 2016.
Mean ± SE of PAR estimated at the seafloor did not differ by
site (P = 0.999) but differed by season, with winter having lower
values of 40.6 ± 1.6 mol m−2 d−1 than the summer values of
55.5 ± 1.3 mol m−2 d−1 (P < 0.001).

Calcification, Tissue Loss and Coral
Condition Through Time
From 2015 to 2017, the mean ± SE net calcification rate of
P. astreoides across all sites was 3.1 ± 0.2 mg cm−2 d−1 (n = 40,
all data are available in Kuffner et al., 2021). Net calcification rates
varied significantly by site and time period, and sites responded
differently across time periods (Supplementary Table 2). If only
corals considered to be “live” (retaining > 50% live tissue) are
included, mean net calcification rates across the 2-year study were
4.8 ± 1.2 mg cm−2 d−1 (n = 10) at Pulaski Shoal and 2.9 ± 0.8 mg
cm−2 d−1 (n = 21) at the other Florida Keys sites. The highest rate
of net calcification measured during any one time period at any
site was 9.4 mg cm−2 d−1 (n = 10) at Pulaski Shoal. Mean net
calcification rates of colonies at Pulaski and Fowey were 56 and
47% higher in the summer than winter, respectively (Figure 2A,
P < 0.001). In the middle Keys, mean net calcification rates were
lowest at Sombrero, 1.7 ± 0.4 mg cm−2 d−1, and continued
to decline over time. In the southern end of the upper Keys at
Crocker, mean net calcification rate was 2.4 mg cm−2 d−1, but
in summer 2016 was 49% higher than the other time periods
(Figure 2A; P = 0.006).

Mean percent live-tissue loss by the end of the 2-year study
was low for corals at Pulaski and Fowey Rocks with 0.04 and
13%, respectively, and higher at Sombrero and Crocker reefs,
with 47 and 13%, respectively (n = 40; Figure 2B). There was
a significant interaction of site and time interval (P < 0.001).
Sombrero had colonies that underwent a threefold increase in
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FIGURE 2 | Coral traits measured after the winter and summer seasons
between April 2015 and 2017 for 40 colonies of the coral Porites astreoides
from four sites on the Florida Keys Reef Tract. (A) Mean net calcification rates
normalized to planar-footprint area (± SE), (B) accumulative percent-planar
tissue loss (± SE), and (C) condition scores at the end of each 6-month time
period based on a scale from 1 to 6, with six indicating the poorest condition
based upon paling, bleaching, and mortality (Baird et al., 2018).

tissue loss from the initial to final time point of the study (Tukey
Post hoc P < 0.001), including one dead colony and four other
colonies with over 90% tissue loss. Percent tissue loss remained
steadier at Crocker (Tukey Post hoc P ≥ 0.868) and higher than
at Pulaski and Fowey.

The coral condition scores based on visual paling, bleaching
and mortality had a significant interactive effect with site and
time interval (n = 40; P < 0.001), demonstrating that Pulaski and
Fowey had consistently healthy colonies throughout the study.
Corals at Crocker were highly stressed in Summer 2015 and
recovered, while corals at Sombrero accumulated stress over time
in response to the high temperature anomalies (Figure 2C).

Two-dimensional PCA plots explained 83.9–92.1% of the
variation and highlight differences in overall coral condition
among sites at each time interval (Figures 3A–D). The high
(poor) condition score at Crocker in Summer 2015 isolated this
site from the rest. The consistently higher calcification rates

at Pulaski across seasons distanced corals at that site from
those at Sombrero.

Final Holobiont Responses
Tissue thickness varied by site (n = 3–10 per site; P < 0.001;
Supplementary Figure 1A) and was >50% lower at Sombrero
than colonies from all other sites (Tukey Post hoc, P ≥ 0.075),
while tissue thickness of colonies from Pulaski, Crocker, and
Fowey did not differ (Tukey Post hoc, P ≥ 0.075). Symbiont
cell densities in colonies from Pulaski had a 2 to 3-fold higher
concentration, 6.08 × 106 cells cm−2, than the other three sites
(n = 10 per site except Sombrero which had n = 3; Supplementary
Figure 1B; Tukey Post hoc, P ≤ 0.015).

For reproduction, oocytes, spermatocytes, and planula larvae
were present in all colonies from Pulaski; Sombrero only
had three reproductive colonies (Supplementary Figure 2).
Mean oocytes, spermatocytes, and larvae differed by sites
(Supplementary Table 3; P ≤ 0.039). Colonies at Sombrero
had 85% less oocytes per polyp than at both Pulaski and
Fowey (Supplementary Figure 1C; P ≤ 0.025). The number of
spermatocytes per polyp marginally differed between Pulaski and
Crocker (Tukey Post hoc P = 0.065). Pulaski had 35% more larvae
per polyp than Sombrero, Crocker, and Fowey (Tukey Post hoc
P < 0.001).

Using the SymPortal pipeline, we were able to determine
different relative abundance of defining-intragenomic variants
(DIVs) by site with colonies from Pulaski consisting of only
three DIVs, whereas the other sites had five (n = 7 per
site). Symbiodinium spp. (formerly Clade A, LaJeunesse et al.,
2018) was ubiquitous in all colonies sampled at all four sites.
Seven Symbiodiniaceae ITS2 type profiles were generated from
SymPortal, with three being unique to the colonies sampled
at Pulaski, while five occurred throughout corals at Sombrero,
Crocker, and Fowey (Supplementary Figure 3).

Taken together, the suite of holobiont response variables
(calcification rate, condition score, tissue loss, tissue thickness,
oocyte and larval density, spermatocyte density, and symbiont
cell density) demonstrated clear overall differences by site
(PERMANOVA P = 0.001). There was no significant effect
of symbiont ITS2-profile type DIV (P = 0.720), nor of
the interaction between site and symbiont type (P = 0.081;
Supplementary Table 3). The site-level differences were evident
with calcification, symbiont cell densities, and reproductive
potential highest for Pulaski in Dry Tortugas National Park and
in the poor status of colonies at Sombrero in the middle Keys
showing high (poor) coral condition scores and high tissue loss.
This multivariate representation of the overall coral response
can be visualized in the PCA plot, showing that the analyses
accounted for 53% of the variation associated with the PC1
axis and 20% on PC2 (Figure 4 and Supplementary Table 2).
Separation by site was most apparent between Sombrero and
Pulaski. Figure 4 illustrates that symbiont cell density, fecundity,
and calcification rates respond together and high levels of those
variables were most associated with Pulaski. Similarly, high levels
of tissue loss and poor coral-condition score responded together
with the inverse of tissue thickness (Figure 4).
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FIGURE 3 | Principal components analysis (PCA) of dimension 1 and 2 with percent variation explained in parentheses consisting of the three traits measured for
corals on the Florida Key Reef Tract at each site at each time interval: (A) Summer 2015, (B) Winter 2016, (C) Summer 2016, and (D) Winter 2017. 95% confidence
ellipses are placed around the mean of each site.

DISCUSSION

Against a backdrop of historical and modern changes in reef
condition along the Florida Keys reef tract, Dry Tortugas
National Park represents an exceptional location, demonstrated
by thicker and longer duration of Holocene reef development
(Toth et al., 2018) and higher rates of net coral calcification
(Kuffner et al., 2013, 2020). Our study, based on quantitative
comparisons of coral performance and proxies for fitness

including colony-level calcification, coral-algal symbiosis, and
reproduction, provided even more evidence supporting the
exceptionality of the Dry Tortugas area. Understanding the
capacity for corals to continue high physiological performance,
even in extreme, fluctuating environments with prolonged
temperature anomalies, can determine resilient from susceptible
coral reefs and specific coral species under anthropogenic climate
change (Loya et al., 2001; Fabricius et al., 2011; Grottoli et al.,
2014). As thermal stress intensifies, it is important to identify
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FIGURE 4 | Principal components analysis (PCA) of dimensions 1 and 2 explaining 83.4% of the variation when incorporating traits in corals destructively sampled at
the end of the study: fecundity (oocytes and planula larvae per polyp), spermaries per polyp, Symbiodiniaceae cell densities, and tissue thickness with the three
non-destructive traits measured and bolded (calcification rates, tissue loss, and condition score). Corals are from 4 sites on the Florida Key Reef Tract; 95%
confidence ellipses are placed around the mean for each site.

coral traits that can serve as proxies for fitness and determine
potential trade-offs among these traits, specifically regarding
in situ coral-algal symbiosis and reproduction concurrent with
calcification along the FKRT (Kuffner et al., 2013; Manzello et al.,
2015; Toth et al., 2018).

Our study demonstrated site-specific differences in
P. astreoides bleaching and recovery response during and
after a high-temperature stress event, suggesting that either
environmental setting, coral genetics, or both elicited a gradient
in “sensitive” to “resistant” responses across the Florida Keys reef
tract. During and after the 2015 bleaching event in the Florida
Keys (Gintert et al., 2018; Manzello et al., 2018), P. astreoides
at Pulaski in Dry Tortugas N. P. consistently outperformed
colonies at the other three sites, based on high net-calcification
rates and symbiont cell densities, low levels of tissue loss, and
high reproductive potential. Our results lend additional evidence
supporting the hope that “oases” reef sites may still exist (Guest
et al., 2018), allowing some corals to persist and continue

thriving under the increased thermal stress impacting the FKRT.
We documented that critical biological processes, including
calcification, symbiosis, and reproduction, were maintained
at certain sites while failing at others, suggesting that some
populations can persist even when major regional disturbances
like the 2015 bleaching event continue to occur.

While P. astreoides has been referred to as a “winner” species
in the Caribbean because of its weedy life history (Darling
et al., 2012), potential resistance to stony coral tissue loss
disease (Aeby et al., 2019), and increasing relative abundance
(Green et al., 2008), our results indicate caution in that even such
weedy winners are vulnerable and that site-specific responses
can inform ecological limits of a resistant species (Grottoli
et al., 2014; Manzello et al., 2015). For instance, even though
Symbiodinium spp. hosted by shallow-dwelling P. astreoides
colonies are mildly tolerant of ultraviolet and high-temperature
stress (Loram et al., 2007; Reynolds et al., 2008), P. astreoides is
still sensitive to rapid temperature fluctuations and susceptible
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to bleaching (Edmunds et al., 2005; Gleason et al., 2006;
Grottoli et al., 2014; Manzello et al., 2015). The prevalence of
P. astreoides throughout the Caribbean and FKRT is likely due
to its high-output reproductive strategy and mode as an asexual,
hermaphroditic and gonochoric brooder, releasing larvae for
multiple months (Chornesky and Peters, 1987; McGuire, 1998;
Green et al., 2008; Schlöder and Guzman, 2008; Edmunds, 2010;
Yakob and Mumby, 2013; Serrano et al., 2016). This reproductive
ability supports high success in recruitment and population
recovery following disturbance (Edmunds, 2010), and a high level
of larval dispersal is suggested by the lack of population structure
in shallow coral reefs of FKRT (Serrano et al., 2016; Gallery et al.,
in press). However, it is important not to take for granted the
reproductive savviness of this species and consider its potential
limitations, as many previously thriving species are declining in
the FKRT and Caribbean, such as Acropora palmata, because of
disease susceptibility and reproductive failure (Baums et al., 2005;
Williams et al., 2008; Randall and Szmant, 2009).

Patterns in Calcification Rates Across
the FKRT
Coral calcification, or the net accumulation of calcium-carbonate
skeleton, is an integrated measure of coral performance
responsive to environmental changes over geological and
ecological time scales (Kuffner et al., 2013; Toth et al.,
2018). Here, we demonstrated that the corals at our middle
Keys and southern upper Keys sites had consistently lower
net calcification rates that reflected no seasonal influence,
whereas corals in the Dry Tortugas and at the northern
upper Keys had overall higher calcification that was seasonal
(greater in summer). A study by Manzello et al. (2015)
showed similar geographic results, with lower rates of
calcification observed in the middle Keys for P. astreoides
and Montastraea cavernosa. On a geologic timescale, there
is a similar geographic pattern observed in Holocene reef
development, with the thickest reefs at either end of the FKRT
and the middle Keys suppressed (Toth et al., 2018). Thus,
evidence continues to mount in support of Ginsburg and
Shinn’s (1964) inimical-waters hypothesis explaining these
spatial patterns in coral calcification and reef development.
Pinpointing what environmental variables are most important
in driving rates of calcification and reef development remains
elusive. Temperature (Shinn, 1966; Jokiel and Coles, 1977,
1990), salinity (Coles and Jokiel, 1978; Lirman and Manzello,
2009), carbonate mineral saturation states (Langdon et al.,
2000; Albright et al., 2016), light attenuation (Falkowski et al.,
1984), and flow (Dennison and Barnes, 1988) can greatly
influence coral growth. Our in situ temperature data do suggest
that temperature variability may be an important difference
among the sites in determining bleaching vulnerability, as
Sombrero Reef experienced the highest and the lowest mean
daily temperatures. As reef managers update marine-spatial
planning and plan extensive reef-restoration activities, it is
important to develop finer scale capabilities in the collection of
remotely sensed and in situ environmental data (Ogden et al.,
1994) so that we can better understand and characterize the

conditions that are conducive to high coral-calcification rates
and positive reef accretion.

Key Biological Traits to Assess Coral
Condition
Most reef-monitoring programs that track the long-term health
and status of reefs focus primarily on the percent cover of
live corals, algae, and other benthic organisms (Edmunds, 2002;
Brown et al., 2004; Ruzicka et al., 2013). In our study, we
measured several physiological variables critical to biological
processes (i.e., calcification, symbiosis, and reproduction), and
these measurements allowed us to make clear distinctions in
coral condition among sites. Using a dual approach, we measured
traits both non-destructively over time (using buoyant weight
and photographic image analysis) and destructively at the end
of the study to assess tissue thickness, reproductive potential,
and maintenance of the coral-algal symbiosis. We discovered
that responses were generally correlated, indicating a lack of
trade-offs among processes such as calcification and larval
production. Through the 2-year study we identified Sombrero
and Pulaski as the worst and best locations for P. astreoides,
respectively, with Crocker and Fowey as moderate sites. It
should be noted that even though there was a loss and thinning
of tissue at Sombrero with few Symbiodiniaceae cells and
nominal to no oocytes or larvae present, spermaries were still
functional and producing spermatocytes in the remaining tissue.
Work on other spawning marine invertebrates (e.g., oysters,
urchins, and ascidians) has demonstrated reproductive plasticity
in response to environmental changes, particularly continued
functioning of male-gamete production after egg production
and traits were altered; the production of male gametes is
considered less energetically demanding and may serve as a last-
ditch effort for genetic persistence (Levitan and Petersen, 1995;
Crean and Marshall, 2008). Ward (1995) observed substantial
energetic costs in reproduction, lipid storage, and calcification
in the brooding coral Pocillopora damicornis; colonies that
released larvae required more lipids for developing larvae and
calcified more slowly than colonies that only released sperm. For
P. astreoides colonies from Dry Tortugas, we found no evidence
of trade-offs, as the colonies maintained high calcification rates
and produced the most larvae and gametes of both sexes, as
well as having higher symbiont cell densities compared with
corals at the other sites. Determining why coral condition was
so universally better in Dry Tortugas compared to the other Keys
reef tract sites will require further testing. Given the importance
of heterotrophic feeding in determining lipids stores and the
resilience they impart during bleaching events (Grottoli et al.,
2006; Solomon et al., 2020), testing the hypothesis that corals in
Dry Tortugas are receiving nutritional subsidies (more or higher
quality plankton) from upwelling events could reveal important
insights regarding the mechanism behind the enhanced growth
rates we observed.

Symbiodiniaceae species and community composition greatly
influence the strength of coral-algal symbiosis under elevated
temperatures (Baskett et al., 2009; Putnam et al., 2012; Cunning
et al., 2015; Parkinson et al., 2015), including survivorship
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and maintenance of calcification (Stat et al., 2008). For
instance, symbiosis with Cladocopium spp. and Durusdinium spp.
(formerly Clade C and D, respectively) is commonly identified
as being thermally tolerant but it is also associated with reduced
coral-calcification rates (Stat and Gates, 2011; Pettay et al., 2015).
Further, symbiont communities or shuffling of symbionts housed
within the coral may be shaped by environmental conditions
(Jones et al., 2008; LaJeunesse et al., 2010; Cunning et al., 2015).
Our study demonstrated that the association of Symbiodinium
spp. (A4 and other subtypes) with Porites astreoides was
ubiquitous (A4 and other subtypes), which is consistent with
previous studies (Thornhill et al., 2006; Kenkel et al., 2013;
Serrano et al., 2016). Symbiodinium spp. are considered tolerant
of high ultraviolet and thermal conditions; however, knowledge
of the physiological functioning of subtypes (e.g., A4a, A4e) or
the combination of subtypes (i.e., A4-A4e-A4a) remains limited.
Since symbiont communities were similar across our sites, we
do not have any evidence to support that site differences in
bleaching response resulted from differences in zooxanthellae
populations. According to Grottoli et al. (2014), the inflexibility
of shallow-dwelling P. astreoides under repeated warming events
can result in accumulated stress, turning former Caribbean
coral “winner” species into a “loser.” Accumulated stress from
back-to-back marine heatwaves (2014 was also a bleaching
year in the Florida Keys Precht et al., 2016) paired with the
inflexibility of P. astreoides with respect to symbiont shuffling
and lack of upregulated feeding under temperature stress could
explain the observed poor performance of colonies located at
Sombrero Reef. Porites astreoides has demonstrated high adaptive
plasticity between inshore and offshore colonies (Kenkel et al.,
2013; Kenkel and Matz, 2016); therefore, a common garden or
reciprocal transplant experiment would be required to address
if local adaptation or acclimatization of corals along the FKRT
contributes to differential susceptibility to heat stress (Sanford
and Kelly, 2011; Torda et al., 2017).

Identifying Environmental and Biological
Drivers
The SEAKEYS program served as an invaluable monitoring
resource that characterized water-column parameters at several
offshore navigational structures across the FKRT subregions
(Ogden et al., 1994); however, with the discontinuation of this
program in 2009 we relied on our own in situ temperature
loggers, virtual buoys, and remote satellites to contextualize
the environment at each site. Understanding the species-
specific responses of corals and reef-building processes to
environmental and biological drivers is important and would
benefit from more attentive monitoring for effective management
and restoration. With the intensity and frequency of marine
heatwaves increasing, repeated bleaching events are becoming
a new normal. This study is a snapshot within a 2-year
window with limited ability to fully contextualize environmental
conditioning, selection, and position along a performance
curve at each study site. With recent events, there have been
conflicting outcomes demonstrating how colonies are able to
retain (Ritson-Williams and Gates, 2020); strengthen (Brown

et al., 2002; Putnam, 2021), or weaken (Grottoli et al., 2014;
Gintert et al., 2018) resistance to bleaching. Through increased
monitoring and identification of key environmental parameters
beyond temperature, higher-resolution maps of potential reef
refugia could be developed (Guest et al., 2018; Lyons et al.,
2020). For example, modeling the extent and dynamics of
inimical waters impacting coral performance within reefs of
the middle and upper Keys as warming continues could better
explain the differential responses to coral bleaching within and
among species as observed by Gintert et al. (2018). Further
understanding of the biological drivers such as local adaptation,
gene expression, nutritional provisioning, and symbiosis can be
further examined to explain differences in coral performance and
reef-building potential in the FKRT subregions. While outlier
sites exist along and within subregions of the FKRT (Kuffner
et al., 2013, 2020; Ruzicka et al., 2013; Gintert et al., 2018;
Toth et al., 2018), it remains unknown why these sites are
relatively more “exceptional,” and a better understanding of
biophysical settings could help differentiate the mechanisms by
which they can escape, resist, or recover from disturbance events
(Guest et al., 2018).

Reef Protection and Restoration
The Florida Keys Reef Tract is in a precarious state given that live-
coral cover is less than 5% (Ruzicka et al., 2013; Toth et al., 2014)
and reef development is net negative in many locations (Perry
et al., 2013; Yates et al., 2017; Kuffner et al., 2019). The reignition
of successful sexual reproduction and coral recruitment is of
utmost importance to the re-establishment of coral populations
and reef accretion, for currently, the reefs of the Florida Keys
are not in a positive-growth phase and have not been since the
mid to late Holocene (Toth et al., 2018). Locating reefs where
coral populations historically maintained ecological function,
such as maintaining three-dimension structure, biodiversity, and
productivity, especially in regions that have undergone warming
in the past (Richey et al., 2007; Stathakopoulos and Riegl, 2015),
could advance research in determining site selection for reef
restoration efforts along the continuum of environmental and
physical conditions throughout the Florida Keys. Our results
demonstrated that measuring calcification rates in situ is a readily
accessible approach that can serve as a proxy for other coral-
performance traits to identify successful populations.

Here, we provide evidence that higher calcification rates do
not translate to resource partitioning or trade-offs as seen in
our P. astreoides colonies living in Dry Tortugas National Park
(DTNP). The Pulaski study site within DNTP is remote at
the western terminus of the reef system, furthest away from
anthropogenic sources of degradation (e.g., coastal development
and run-off). DTNP potentially serves as a source for both larval
delivery to FKRT sites as the Florida Current could disperse
larvae northward (Lee et al., 1992, 1994; Serrano et al., 2016)
and larval retention due to the presence of mesoscale eddies
that extend down to 100 m depths (Hitchcock et al., 2005;
Kourafalou and Kang, 2012). The transport of larvae from
healthy populations could be critical in supplying reefs in FKRT
impacted by multiple stressors. Recent work by Schoepf et al.
(2019) showed that exposure to elevated temperatures does
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not guarantee stress-resistance, and naïve corals from suitable
and cooler conditions were more able to withstand heat stress
than counterparts periodically conditioned. Reefs in DTNP are
repeatedly bathed in cooler waters and thus may benefit from
episodic upwelling (Figure 1C; Ogden et al., 1994; Kuffner, 2016),
and depending on pelagic larval duration of coral species, the
populations naturally occurring or those potentially restored
there in the future could assist in repopulating reefs in FKRT, if
those habitats are suitable for recruitment and coral growth.
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